Нужно пройти все 7 мостов. Разоблачаем! Можно ли пройти этот лабиринт? Деревянный мост, Holzbrücke

А знаете ли вы, что семь мостов города Кенингсберга (сейчас этот город называется Калининград) стали «виновниками» создания Леонардом Эйлером теории графов (Граф – это определенное количество узлов (вершин), соединённых рёбрами). Но как, же это произошло?

Два острова и берега на реке Прегель, на которой стоял Кенингсберг, были соединены 7 мостами. Знаменитый философ и ученый Иммануил Кант, гуляя по мостам города Кенигсберга, поставил задачу, известную всем в мире как задача о 7 кенигсбергских мостах: можно ли пройти по всем данным мостам и при этом вернуться в исходную точку маршрута так, чтобы пройти по каждому мосту только 1 раз. Многие пытались решить данную задачу как практически, так и теоретически. Но никому это не удавалось, при этом и не удавалось доказать, что это невозможно даже теоретически. Поэтому, по историческим данным, считается, что в 17 веке у жителей сформировалось особая традиция: прогуливаясь по городу, пройти по всем мостам всего по 1 разу. Но, как известно, ни у кого это не получилось.

В1736 г. данная задачка заинтересовала ученого Леонарда Эйлера, выдающегося и знаменитого математика и члена Петербургской академии наук. Об этом он написал в письме своему другу – ученному, итальянскому инженеру и математику Мариони от 13 марта1736 г. Он нашел правило, используя которое можно было легко и просто получить ответ на данный интересующий всех вопрос. В случае с городом Кенингсберг и его мостами это оказалось невозможно.

В процессе своих рассуждений, Эйлер пришел к следующим теоретическим выводам:

Число нечётных вершин (вершин, к которым ведёт нечётное число рёбер) графа должно быть чётно. Не может существовать граф, который имел бы нечётное число нечётных вершин.

Если все вершины графа чётные, то можно, не отрывая карандаша от бумаги, начертить граф, при этом можно начинать с любой вершины графа и завершить его в той же вершине.

Граф с более чем 2 нечётными вершинами невозможно начертить одним росчерком

Если рассматривать данное правило к 7 мостам Кенингсберга, то части города на рисунке (графе) обозначаются вершинами, а мосты – ребрами, соединяющими данные вершины. Граф 7 кёнигсбергских мостов имел 4 нечётные вершины (то есть все, его вершины были нечетные), следовательно, невозможно пройти по всем 7 мостам, не проходя ни по одному из них дважды.

Казалось бы, у такого необычного открытия не может быть никакого реального применения и практической пользы. Но применение нашлось, и еще какое. Теория графов, созданная Леонардом Эйлером, легла в основу проектирования коммуникационных и транспортных систем, она используется в программировании и информатике, в физике, химии и многих других науках и областях.

Но самое интересное в том, что историки считают, что есть человек, который решил данную задачу, он смог пройти через все мосты только один раз, правда теоретически, но решение было…. А произошло это вот как...

Кайзер (император) Вильгельм славился своей простотой мышления, прямотой и солдатской «недалёкостью». Однажды, находясь на светском рауте, он чуть не стал жертвой шутки, которую с ним решили сыграть учёные умы, присутствующие на данном приёме. Они показали кайзеру карту города Кёнигсберга, и попросили его попробовать решить эту знаменитую задачку, которая по определению была просто не решаемой. К всеобщему удивлению, Кайзер попросил лист бумаги и перо, и при этом уточнил, что решит данную задачку всего за полторы минуты. Ошеломлённые ученные не могли поверить своим ушам, но чернила и бумагу быстро нашли для него. Кайзер положил листок на стол, взял перо, и написал: «Приказываю построить восьмой мост на острове Ломзе». И все задача решена…..

Так в городе Кёнигсберг и появился новый 8 мост через реку, который так и назвали - мост Кайзера. А задачку с 8 мостами теперь может решить даже ребёнок.

Более 10 лет в газете «Новые КОЛЁСА Игоря РУДНИКОВА» под рубрикой «Прогулки по Кёнигсбергу» печатаются статьи, посвящённые истории нашего города. Из более чем 500 очерков-прогулок для книги мы выбрали 34 – грустных и весёлых, трагических и эпических. В главах – зарисовки обычаев и быта кёнигсбержцев, основанные на исторических фактах, легендах и преданиях: мода и архитектура, полиция, военные и пожарные, рестораны и кафе, университет и школы, историческая связь Кёнигсберга с Россией и многое другое… Фотографии Кёнигсберга и иллюстрации художника С. Фёдорова, сделанные специально для этой книги, дадут нам возможность представить этот город-«Атлантиду».

Семь мостов Кёнигсберга

Задачу Эйлера решили война и советская власть

Известно, что великий швейцарский математик Леонард Эйлер создал целое направление науки, решая задачу о семи кёнигсбергских мостах.

Зря топтать башмаки

Существует легенда, что жители Кёнигсберга любили прогуливаться по улицам трёх «слившихся» в единое целое средневековых городов: Альтштадта, Лёбенихта и Кнайпхофа, – но терпеть не могли зря топтать свои башмаки. А города эти были соединены между собой семью мостами. И вот будто бы экономные горожане однажды задумались: а можно ли пройти по всем мостам так, чтобы на каждом из них побывать лишь один раз и вернуться к месту, откуда начал прогулку?

Эйлера задача заинтересовала. «Никто ещё до сих пор не смог это проделать, но никто и не доказал, что это невозможно… Для решения недостаточны ни геометрия, ни алгебра, ни комбинаторское искусство», – так писал он своему коллеге, итальянскому математику и инженеру.

В конце концов, выстроив сложнейший алгоритм, Эйлер получил отрицательный ответ. Пройти по всем мостам лишь по одному разу и, описав круг, вернуться в исходную точку оказалось невозможным.

Лавочный, Зелёный и Кузнечный

Итак, самым старым был мост Лавочный (Кремербрюкке). Его построили в 1286 году по инициативе бургомистрата Альтштадта (только что получившего городские права). Связывал он Альтштадт с островом Кнайпхоф, на котором ещё не было городского поселения.

Рядом с Лавочным мостом была построена будка – как пишется в немецких бумагах, «для складирования возможного хлама». В 1339 году мост упоминается как названный в честь святого Георга, но в 1397 году он обретает новое имя: Когенбрюкке, то есть Мост Судов (купеческие корабли назывались тогда в Ганзе когами). В 1548 году это имя стало официальным, изменившись на одну букву: Кокенбрюкке.

В 1787 году мост реконструировали. Убрали «будку для хлама». В 1900-м на месте деревянного Кокенбрюкке был сооружён новый, из металла. Он благополучно пережил войну и был снесён в 1972 году при строительстве моста Эстакадного.


Лавочный мост и старые портовые склады


Потроховый мост


Далее – Зелёный (Грюнебрюкке). Был сооружён в 1322 году через рукав реки Прегель, для того чтобы обеспечить движение из пригородов Понарта к Королевскому замку. В 1582 году сгорел. Через шесть лет был построен заново, опять из дерева. В этом виде просуществовал до 1907 года, потом его заменили на металлический, был разводным. Механизм приводился в движение вручную. Войну пережил. «Приговорили» его в том же 1972-м, при строительстве Эстакадного.

В 1379-м, по инициативе альтштадтцев и по решению магистра Тевтонского ордена Винриха, был построен мост, параллельный Лавочному. Он получил название Кузнечный (Шмидебрюкке). Тоже имел при себе будку «для хлама».

К 1787 году Кузнечный мост обветшал и был заменён на новый, тоже деревянный. В металле его построили в 1846 году. Вместо будки поставили башенку для паровой установки – разводного механизма.

Во время штурма Кёнигсберга его разрушили и больше не восстановили.

Потроховый, Высокий и Деревянный

Параллельно Зелёному шёл Потроховый (Мясной) мост (Кёттельбрюкке), расположенный у скотобойни, перед зданием Биржи (ныне Дворец культуры моряков). Его соорудили в 1377 году на средства жителей Кнайпхофа, чтобы он связывал их с Форштадтом – районом складских помещений. Там, в Форштадте, вначале хранились запасы древесины для отопления.

Частично Потроховый мост был разрушен ещё до штурма города в апреле 1945-го, и его пролёты пошли на ремонт Деревянного моста (Хальцбрюкке). Деревянный цел и поныне, он связывает бывший Альтштадт с Октябрьским островом (бывшим островом Ломзе). Если присмотреться, то можно увидеть, что ковка перил различна: в одних местах её элементы – дубовые листья, в других, заимствованных с Потрохового, – колечки.

В 1377 году было получено разрешение на строительство Высокого (Хоэбрюкке) моста (соединяет Октябрьский остров с нынешней улицей Дзержинского). В конце XIX века его деревянный вариант сменился сооружением из кирпича и металла. Кстати, рядом с этим мостом – единственное на весь город уцелевшее здание подъёмных механизмов – башенка, именуемая Мостовым домиком. (Она совсем было уже заваливалась в Прегель, но несколько лет назад её восстановили.)

В 1937 году чуть восточнее был построен новый мост из металла и бетона. Именно он существует и по сей день. Правда, с той поры он не модернизировался, хотя, по плану, текущей реконструкции должны были подвергнуться все мосты Кёнигсберга.

А может, оно и к лучшему? Очевидцы вспоминают, как в 1996 году сапёры – наши, калининградские, – при ремонте Эстакадного моста взрывали бетонное покрытие толовыми шашками! Притом что конструкции этого рода очень чувствительны даже не к ударной волне, а просто к синхронному колебанию. Известен ведь случай, когда довольно крепкий мост обрушился от того, что рота солдат прошлась по нему в ногу…

Императорский и Медовый

Сохранился и мост Медовый (Хонигбрюкке), построенный в 1542 году. По преданию, своим «вкусным» названием он обязан… взятке, которую будто бы получил обер-бурграф Базенраде от кнайпхофского городского совета. За разрешение на строительство моста, связующего Кнайпхоф с островом Ломзе, минуя Альтштадт. Будто бы кнайпхофцы поставили Базенраде целую бочку меда, – а рассерженные альтштадтцы прозвали их за это «медовыми лизунами».

Так или иначе, Медовый пережил Вторую мировую. И сейчас ведёт он к Кафедральному собору с улицы Октябрьской. Чуть было не прикончила его баржа под названием «Алые паруса» – помните, был такой плавучий ресторанчик на Преголе. Во время сильного ветра баржу сорвало с якоря и она протаранила носом перила моста. Аккурат по центру. Но… местные умельцы благополучно решили проблему с помощью автогена. А баржу оттащили на металлолом.


…Другие кёнигсбергские мосты появились значительно позже и к задаче Эйлера отношения не имеют.

Так, построенный в 1905 году Императорский мост (Кайзербрюкке) связывал остров Ломзе с Форштадтом. Частично мост пострадал во время войны. Один его пролёт сохранялся до середины восьмидесятых, а потом его пустили на металлолом.

Железнодорожный и Берлинский

Старый Железнодорожный мост связывал старый Южный и Восточный вокзалы с альтштадтским складским районом. В 1929 году его признали аварийным, через четыре года разобрали. А после войны первые переселенцы восстановили мост, хотя и не в прежнем виде.

Новый Железнодорожный – более известный как двухъярусный – был взорван немецкими сапёрами во время штурма Кёнигсберга. Советские сапёры «навели» его сразу после войны. Разводился он тогда, не поднимаясь вверх обеими половинками, а «разъезжаясь» в стороны путём поворота.

Кстати, именно он остался в истории советского кинематографа. В фильме «Встреча на Эльбе», который снимался в Калининграде в 1948–1949 годах, есть кадр: бывшие друзья и союзники, русские и американцы, толпятся по обеим сторонам реки – типа, Эльбы, – а американцы разводят мост, знаменуя тем самым начало холодной войны.

Так вот, в роли «моста через Эльбу» снимался наш двухъярусный. Реконструировали его в конце пятидесятых и сделали поднимающимся.

А вот Берлинский (Пальмбургский) – тот, что за посёлком Борисово, по окружной дороге в сторону Исаково, – так и застыл в «полусведённом» состоянии. Точно закоченел в судороге. Его взорвали в сорок пятом, перед штурмом.


Высокий мост


Во времена правления первого секретаря обкома КПСС Коновалова одна часть моста была сведена. Строители приступили ко второй, но из Москвы на них гневно прикрикнули: «Неметчину восстанавливаете?!» В результате специальная техника была отправлена на металлолом, а мост так и остался… историческим памятником. Общей кёнигсбергско-калининградской истории. Хотя восстановить его – не проблема.

Монстр поперёк проспекта

…Кстати, когда строился Эстакадный мост, ширина его проезжей части совпадала с суммарной шириной Лавочного и Кузнечного. Дешевле было восстановить два параллельных моста – Кузнечный и Потроховый – и осуществлять по ним движение. Но… тогда во всём царила гигантомания, требовались строительные объёмы.

Ещё смешнее – и трагичнее! – произошло с тем монстром, который торчит поперёк Московского проспекта. Архитекторы – авторы этого «чуда» – утверждают, что действовали на основании немецкого проекта реконструкции Кёнигсберга. На самом деле в немецких планах был предусмотрен совсем другой мост – от проспекта Калинина до Литовского Вала. А это место было выбрано исключительно из меркантильных соображений: под снос подпадало много жилых домов, людей требовалось расселять… Значит, должно было вестись новое строительство, это большой объём капиталовложений… А архитектор получал процент от вала: чем больше объём работ, тем внушительней гонорар. И вот… мы имеем то, что имеем.

…В общем, задачка Эйлера имеет сегодня совсем другое решение. По оставшимся в Калининграде мостам вполне реально описать круг, не повторяя «простые движения». Вот только… захочется ли? И дело даже совсем не в ботинках.


Рассмотрев эту задачу, в 1736 году Эйлер доказал, что это невозможно, причем он рассмотрел более общую задачу: какие местности, разделенные рукавами рек и соединенные мостами, возможно обойти, побывав на каждом мосту ровно один раз, а какие невозможно.

кенигсбергских мостов">

Несколько модифицируем задачу. Каждую из рассматриваемых местностей, разделенных рекой, обозначим точкой, а соединяющие их мосты – отрезком линии (не обязательно прямой). Тогда вместо плана будем работать просто с некой фигурой, составленной из отрезков кривых и прямых. Такие фигуры в современной математике называются графами, отрезки – ребрами, а точки, которые соединяют ребра – вершинами. Тогда исходная задача эквивалентна следующей: можно ли начертить данный граф, не отрывая карандаша от бумаги, то есть таким образом, чтобы каждое его ребро пройти ровно один раз.

Такие графы, которые можно начертить, не отрывая карандаша от бумаги, называются уникурсальными (от латинского unus cursus – один путь), или эйлеровыми. Итак, задача ставится таким образом: при каких условиях граф уникурсален? Ясно, что уникурсальный граф не перестанет быть уникурсальным, если изменить длину или форму его ребер, а также изменить расположение вершин – лишь бы не менялось соединение вершин ребрами (в том смысле, что если две вершины соединены, они должны оставаться соединенными, а если разъединены – то разъединенными).

Если граф уникурсален, то и топологически эквивалентный ему граф тоже будет уникурсальным. Уникурсальность, таким образом, является топологическим свойством графа.

Во-первых, надо отличать связные графы от несвязных. Связными называются такие фигуры, что любые две точки можно соединить каким-нибудь путем, принадлежащим этой фигуре. Например, большая часть букв русского алфавита связны, но вот буква Ы – нет: невозможно перейти с ее левой половинки на правую по точкам, принадлежащим этой букве. Связность – это топологическое свойство: оно не меняется при преобразованиях фигуры без разрывов и склеек. Понятно, что если граф уникурсален, то он обязан быть связным.

Во-вторых, рассмотрим вершины графа. Будем называть индексом вершины число ребер, встречающихся в этой вершине. Теперь зададимся вопросом: чему могут равняться индексы вершин уникурсального графа.

Здесь может быть два случая: линия, вычерчивающая граф, может начинаться и заканчиваться в одной и той же точке (назовем ее «замкнутый путь»), а может в разных (назовем ее «незамкнутый путь»). Попробуйте сами нарисовать такие линии – с какими хотите самопересечениями – двойными, тройными и т. д. (для наглядности лучше, чтобы ребер было не больше 15).

Нетрудно видеть, что в замкнутом пути все вершины имеют четный индекс, а в незамкнутом – ровно две имеют нечетный (это начало и конец пути). Дело в том, что, если вершина не является начальной или конечной, то, придя в нее, надо затем из нее выйти – таким образом, сколько ребер входят в нее, столько же выходят из нее, а всего число входящих и исходящих ребер будет четным. Если начальная вершина совпадает с конечной, то ее индекс также четен: сколько ребер из нее вышло, столько же и вошло. А если начальная точка не совпадает с конечной, то их индексы нечетные: из начальной точки нужно один раз выйти, а затем, если в нее и вернемся, то выйти снова, если еще раз вернемся – опять выйти, и т. д.; а в конечную нужно придти, а если из нее потом и выходим, то опять нужно вернуться, и т. д.

Итак, чтобы граф был уникурсальным, необходимо, чтобы все его вершины имели четный индекс либо чтобы число вершин с нечетным индексом равнялось двум.

Посчитайте индексы его вершин и убедитесь, что он никак не может быть уникурсальным. Вот поэтому-то у вас ничего не получалось, когда вы хотели обойти все мосты...

Возникает вопрос: а если в связном графе нет вершин с нечетным индексом либо таких вершин ровно две, то обязательно ли граф уникурсален? Можно строго доказать, что да! Таким образом, уникурсальность однозначно связана с числом вершин с нечетным индексом.

Упражнение: постройте на схеме кенигсбергских мостов еще один мост – там, где захотите – чтобы полученные мосты можно было бы обойти, побывав на каждом ровно по разу; реально проделайте такой путь.

Теперь еще один интересный факт: оказывается, любую систему местностей, соединенных мостами, можно обойти, если необходимо побывать на каждом мосту ровно два раза! Попробуйте это доказать самостоятельно.

НОВОСТИ ФОРУМА
Рыцари теории эфира
01.10.2019 - 05:20: -> - Карим_Хайдаров.
30.09.2019 - 12:51:

Или Задача о семи кёнигсбергских мостах — старинная математическая задача, в которой спрашивалось, как можно пройти по всем семи мостам Кёнигсберга, не проходя ни по одному из них дважды. Впервые была решена в 1736 году математиком Леонардом Эйлером , доказавшим, что это невозможно, и изобретшим таким образом эйлеровы циклы .


Издавна среди жителей Кёнигсберга была распространена такая загадка: как пройти по всем городским мостам (через реку Преголя), не проходя ни по одному из них дважды. Многие кёнигсбержцы пытались решить эту задачу как теоретически, так и практически, во время прогулок. Впрочем, доказать или опровергнуть возможность существования такого маршрута никто не мог.

В 1736 году задача о семи мостах заинтересовала выдающегося математика, члена Петербургской академии наук Леонарда Эйлера, о чём он написал в письме итальянскому математику и инженеру Маринони от 13 марта 1736 года. В этом письме Эйлер пишет о том, что он смог найти правило, пользуясь которым, легко определить, можно ли пройти по всем мостам, не проходя дважды ни по одному из них. В данном случае ответ был: «нельзя».

Решение задачи по Леонарду Эйлеру


На упрощённой схеме города (графе) мостам соответствуют линии (ребра графа), а частям города — точки соединения линий (вершины графа). В ходе рассуждений Эйлер пришёл к следующим выводам:

  • Число нечётных вершин (вершин, к которым ведёт нечётное число рёбер) графа должно быть чётно. Не может существовать граф, который имел бы нечётное число нечётных вершин.
  • Если все вершины графа чётные, то можно, не отрывая карандаша от бумаги, начертить граф, при этом можно начинать с любой вершины графа и завершить его в той же вершине.
  • Если ровно две вершины графа нечётные, то можно, не отрывая карандаша от бумаги, начертить граф, при этом можно начинать с любой из нечётных вершин и завершить его в другой нечетной вершине.
  • Граф с более чем двумя нечётными вершинами невозможно начертить одним росчерком.
  • Граф кёнигсбергских мостов имел четыре нечётные вершины (то есть все) — следовательно, невозможно пройти по всем мостам, не проходя ни по одному из них дважды.


Но самое интересное в том, что историки считают, что есть человек, который решил данную задачу, он смог пройти через все мосты только один раз, правда теоретически, но решение было…. А произошло это вот как...

Кайзер (император) Вильгельм славился своей простотой мышления, прямотой и солдатской «недалёкостью». Однажды, находясь на светском рауте, он чуть не стал жертвой шутки, которую с ним решили сыграть учёные умы, присутствующие на данном приёме. Они показали кайзеру карту города Кёнигсберга, и попросили его попробовать решить эту знаменитую задачку, которая по определению была просто не решаемой.

К всеобщему удивлению, Кайзер попросил лист бумаги и перо, и при этом уточнил, что решит данную задачку всего за полторы минуты. Ошеломлённые ученные не могли поверить своим ушам, но чернила и бумагу быстро нашли для него. Кайзер положил листок на стол, взял перо, и написал: «Приказываю построить восьмой мост на острове Ломзе». И всё: задача решена…

Так в городе Кёнигсберг и появился новый 8-й мост через реку, который так и назвали — мост Кайзера , который был впоследствии разрушен в ходе бомбардировки во время Второй мировой войны.

На опорах Императорского моста в 2005 году был построен Юбилейный мост. На 2017 год в Калининграде восемь мостов.

____________________

Небольшой научно-популярный фильм, рассказывающий о том, как абстрактная математическая теория, зародившаяся 300 лет назад, неожиданно нашла свое применение в современной науке.

В 1735 году математик Леонард Эйлер решил знаменитую загадку о семи мостах Кёнигсберга, положив начало новой области математики - теории графов. Изначально, в теории не углядяли никакого прикладного значения, и она оставалась "чисто математической". Однако, в 21 веке теория графов находит свое применение во многих областях науки. С помощью неё, например, решается задача рафсшифровки ДНК.

От мостов Кёнигсберга до сборки генома


Муниципальное автономное образовательное учреждение

«Средняя общеобразовательная школа №6» г.Перми

История математики

Старая-старая задача о мостах Кенигсберга

Выполнил: Железнов Егор,

ученик 10 «а» класса

Руководитель: Орлова Е. В.,

учитель математики

2014, г. Пермь

Введение …………………………………………………………………………..3

История мостов Кенигсберга …………………………………………................4

Задача о семи мостах Кенигсберга ………………………………………….......8

Вычерчивание фигур одним росчерком ……………………………………….12

Заключение ………………………………………………………………………15

Список литературы...…………………………………………………………….16

Приложение 1 ……………………………………………………………………18

Приложение 2 ……………………………………………………………………22

Приложение 3 ……………………………………………………………………23

Приложение 4 ……………………………………………………………………26

Ведение

Кенигсберг – это историческое название Калининграда, центра самой западной области России, знаменитой своим мягким климатом, пляжами и изделиями из янтаря. Калининград обладает богатым культурным достоянием. Здесь в свое время жили и трудились великий философ И. Кант, сказочник Эрнст Теодор Амадей Гофман, физик Франц Нейман и многие другие, чьи имена вписаны в историю науки и творчества. С Кенигсбергом связана одна интересная задача, так называемая задача о мостах Кенигсберга.

Цель нашего исследования: изучить историю возникновения задачи о мостах Кенигберга, рассмотреть её решение, выяснить роль задачи в развитии математики.

Для достижения цели необходимо решить следующие задачи:

    изучить литературу по данной теме;

    систематизировать материал;

    подобрать задачи в решении которых используется прием решения задачи о мостах Кентгсберга,;

    составить библиографический список литературы.

    История мостов Кенигсберга

Возникший в город Кёнигсберг (ныне ) состоял из трёх формально независимых городских поселений и ещё нескольких «слобод» и «посёлков». Расположены они были на островах и берегах реки (ныне Преголя), делящей город на четыре главные части: , , и . Для связи между городскими частями уже в стали строить . В связи с постоянной военной опасностью со стороны соседних и , а также по причине междоусобиц между Кёнигсбергскими городами (в - между городами даже произошла война, вызванная тем, что Кнайпхоф перешёл на сторону Польши, а Альтштадт и Лёбенихт остались верны ) в кёнигсбергские мосты имели оборонные качества. Перед каждым из мостов была построена оборонительная башня с закрывающимися подъёмными или двустворчатыми воротами из дуба и с железной кованой обивкой. Да и сами мосты приобретали характер оборонительных сооружений. Опоры некоторых мостов имели пятиугольную форму, типичную для бастионов. Внутри этих опор располагались казематы. Из опор можно было вести огонь через амбразуры.

Мосты были местом шествий, религиозных и праздничных процессий, а в годы так называемого «Первого русского времени» (-), когда во время Семилетней войны Кёнигсберг ненадолго вошёл в состав , по мостам проходили крестные ходы. Один раз такой крестный ход даже был посвящён православному празднику Водосвятия реки Прегель, вызвавшему неподдельный интерес у жителей Кёнигсберга.

К концу 19 века в Кёнигсберге было построено 7 основных мостов (Приложение 1).

Самый старый из семи мостов Лавочный мост (Krämerbrücke/ Крэмер-брюке). Он был построен в 1286 году. Само название моста говорит само за себя. Площадь, которая прилегала к нему, была местом оживлённой торговли. Он связывал два средневековых города Альтштадт и Кнайпхоф. Построен он был сразу же в камне. В 1900 году он был перестроен и сделан разводным. По мосту стали ходить трамваи. Во время войны он был сильно разрушен, но восстановлен, пока в 1972 году не был демонтирован.

Вторым по возрасту был Зелёный мост (Grüne Brücke/Грюне-брюке) . Он был построен в . Этот мост связал остров Кнайпхоф с южным берегом Прегеля. Он так же был каменным и трёхпролётным. В 1907 году мост был перестроен, средний пролёт стал разводным и по нему стали ходить трамваи. Во время войны этот мост сильно пострадал, был восстановлен, а в 1972 году - демонтирован. Название моста происходит от цвета краски, в который традиционно красили опоры и пролётное строение моста. В у Зелёного моста гонец раздавал прибывшие в Кёнигсберг письма. В ожидании корреспонденции здесь собирались деловые люди города. Здесь же в ожидании почты они обсуждали свои дела. Неудивительно, что именно в непосредственной близости от Зелёного моста в была построена кёнигсбергская торговая . В на другом берегу Прегеля, но также в непосредственной близости от Зелёного моста было построено новое здание торговой биржи, сохранившееся до сих пор (ныне Дворец культуры моряков). В 1972 году вместо Зелёного и Лавочного мостов был построен Эстакадный мост.

После Лавочного и Зелёного был построен Рабочий мост (Koettelbrucke/ Кёттель или Киттель-брюке), также соединявший Кнайпхоф и Форштадт. Иногда название также переводят как Потроховой мост. И тот, и другой вариант перевода не является идеальным, так как немецкое название происходит из и по-русски означает примерно «рабочий, вспомогательный, предназначенный для провоза мусора» и.т.п. Этот мост был построен в . Он соединил город Кнайпхоф с пригородом Форштадт. Мост был наполовину каменным, а пролёты - деревянные настилы. В 1621 году, во время сильного наводнения, мост сорвало и унесло в реку. Мост возвратили на место. В 1886 году его заменили новым, стальным, трёхпролётным, разводным. По нему тоже ходили трамваи. Мост был разрушен во время и позднее не восстанавливался.

Семь мостов Кенигсберга – Википедия (ru /wikipedia .ord )

Теория графов – сайт www .ref .by /refs

Приложение 1

Лавочный мост

Зеленый мост

Потроховый мост

Кузнечный мост

Деревянный мост


Высокий мост

Медовый мост. Вид сбоку на

бывший разводной пролёт.


Медовый мост. Остатки разводного механизма.

Кайзера мост

Приложение 2

Леонард Эйлер

Немецкий и русский математик, механик и физик. Родился 15 апреля 1707 г. в Базеле. Учился в Базельском университете (в 1720–1724 гг.), где его учителем был Иоганн Бернулли. В 1722 г. получил степень магистра искусств. В 1727 г. переехал в Санкт-Петербург, получив место адъюнкт-профессора в недавно основанной Академии наук и художеств. В 1730 г. стал профессором физики, в 1733 г. – профессором математики. За 14 лет своего первого пребывания в Петербурге Эйлер опубликовал более 50 работ. В 1741–1766 гг. работал в Берлинской академии наук под особым покровительством Фридриха II и написал множество сочинений, охватывающих по существу все разделы чистой и прикладной математики. В 1766 г. по приглашению Екатерины II Эйлер возвратился в Россию. Вскоре после прибытия в Санкт-Петербург полностью потерял зрение из-за катаракты, но благодаря великолепной памяти и способностям проводить вычисления в уме до конца жизни занимался научными исследованиями: за это время им было опубликовано около 400 работ, общее же их число превышает 850. Умер Эйлер в Санкт-Петербурге 18 сентября 1783 г.

Труды Эйлера свидетельствуют о необычайной разносторонности автора. Широко известен его трактат по небесной механике «Теория движения планет и комет». Автор книг по гидравлике, кораблестроению, артиллерии. Наибольшую известность принесли Эйлеру исследования в области чистой математики.

Приложение 3

Задачи

З
адача 1
(задача о мостах Ленинграда). В одном из залов Дома занимательной науки в Санкт-Петербурге посетители показывали схему мостов города (рис.). Требовалось обойти все 17 мостов, соединяющих острова и берега Невы, на которых расположен Санкт-Петербург. Обойти надо так, чтобы каждый мост был пройден один раз.

И перерезавши кварталы,

Всплывают вдруг из темноты

Санкт-Петербургские каналы,

Санкт-Петербургские мосты!

(Н. Агнивцев)

Докажите, что требуемый уникурсальный обход всех мостов Санкт-Петербурга того времени возможен, но не может быть замкнутым, т. е. оканчиваться в пункте, от которого начинался.

Задача 2. На озере находится семь островов, которые соединены между собой так, как показано на рисунке. На какой остров должен доставить путешественников катер, чтобы они могли пройти по каждому мосту и только один раз? Почему нельзя доставить путешественников на остров A? 17

Задача 3. (В поисках сокровищ) .

На рис. изображен план подземелья, в одной из комнат которого скрыты богатства рыцаря. Чтобы безопасно проникнуть в эту комнату, надо, войти через определенные ворота в одну из крайних комнат подземелья, пройти последовательно через все 29 дверей, выключая сигнализацию тревоги. Проходить дважды через одни и те же двери нельзя. Определить номер комнаты в которой скрыты сокровища и ворота через которые нужно войти? 20

З

адача 4 . Павлик -заядлый велосипедист - изобразил на классной доске часть плана местности и поселка (рис.8), где он жил прошлым летом. По рас­сказу Павлика, недалеко от поселка, расположившегося по берегам реки Оя, есть маленькое глубокое озерцо, питающееся подземными источника­ми. От него и берет начало Оя, ко­торая при входе поселок разде­ляется на две отдельные речушки, соединенные естественным каналом так, что образуется зеленый остро­ вок (на рисунке отмечен буквой А) с пляжем и спортплощадкой. Далек о за поселком обе речушки, сли­ваясь, образуют широкую реку. Павлик утверждает, что, возвра­щаясь на велосипеде со спортивной площадки, находящейся на острове, домой (на рисунке буква D ), он проезжает по одному разу по всем восьми мостикам, показанным на плане, ни разу не прерывая движе­ния. Наши знатоки теории таких головоломок отметили буквами А, В, С, D участки поселка, разъединен­ные речкой (участки - это узлы се­ти, мосты - ветви), и установили, что уникурсальный маршрут, начи­нающийся в А (нечетном узле), воз­можен, но закончиться он должен непременно в В - во втором нечет­ном узле, остальные два узла С и D - четные. Но ведь и Павлик го­ворит правду: его маршрут из А в D действительно пролегал по всем восьми мостикам и был уникурсальным. В чем же здесь дело? Как вы полагаете?

Задача 5 . Английский математик Л.Кэрролл (автор всемирно известных книг «Алиса в стране чудес», «Алиса в Зазеркалье» и др.) любил задавать своим маленьким друзьям головоломку на обход фигуры (рис.9) единым росчерком пера и не проходя дважды ни одного участка контура. Пересечение линий допускалось. Такая задача решается просто.

Усложним ее дополнительным требованием: при каждом переходе через узел (считая узлами точки пересечения линий на рисунке) направление обхода должно изменяться на 90°. (Начиная обход с любого узла, придется сделать 23 поворота) 6 .

Задача 6 . (Муха в банке) Муха забралась в банку из-под сахара. Банка имеет форму куба. Сможет ли муха последовательно обойти все 12 ребер куба, не проходя дважды по одному ребру. Подпрыгивать и перелетать с места на место не разрешается. 22

Задача 7 . На рисунке изображена птица. Можно ли нарисовать ее одним росчерком?

Задача 8 . На рис.10 пред­ставлен эскиз одного из портретов Эйлера. Художник воспроизвел его одним росчерком пера (только воло­сы нарисованы отдельно). Где на ри­сунке расположены начало и конец уникурсального контура? Повторите движение пера художника (волосы и пунктирные линии на рисунке не включаются в маршрут обхода) 6 .

Рис.10

З

адача 9 . Начертить одним росчерком следующие фигуры. (Такие фигуры называются уникурсальными (от латинского unus – один, cursus –путь)).


Приложение 4

Решение задач

1

.

3 . Для решения нужно построить граф, где вершины – номера комнат, а ребра – двери.

Нечетные вершины: 6, 18. Так как количество нечетных вершин = 2, то безопасно проникнуть в комнату с сокровищами можно.

Начать путь нужно через ворота В , а закончить в комнате № 18 .

5. Пример требуемого обхода дан на рисунке

6 . Ребра и вершины куба образуют граф, все 8 вершин которого имеют кратность 3 и, следовательно, требуемый условием обход невозможен.

7. Взяв за вершины графа точки пересечения линии, получим 7 вершин, только две из которых имеют нечетную степень. Поэтому в этом графе существует эйлеров путь, а значит, его (т.е. птицу) можно нарисовать одним росчерком. Начать путь нужно в одной нечетной вершине, а закончить в другой.

8. Начать обход надо с нечетного узла в уголке правого глаза и закончить в нечетном узле брови над левым глазом (пунктирные линии в сеть не входят). Все остальные узлы на рисунке четные.

9 .

Похожие публикации